12,347 research outputs found

    Characterizing the uncertainty in holddown post load measurements

    Get PDF
    In order to understand unexpectedly erratic load measurements in the launch-pad supports for the space shuttle, the sensitivities of the load cells in the supports were analyzed using simple probabilistic techniques. NASA engineers use the loads in the shuttle's supports to calculate critical stresses in the shuttle vehicle just before lift-off. The support loads are measured with 'load cells' which are actually structural components of the mobile launch platform which have been instrumented with strain gauges. Although these load cells adequately measure vertical loads, the horizontal load measurements have been erratic. The load measurements were simulated in this study using Monte Carlo simulation procedures. The simulation studies showed that the support loads are sensitive to small deviations in strain and calibration. In their current configuration, the load cells will not measure loads with sufficient accuracy to reliably calculate stresses in the shuttle vehicle. A simplified model of the holddown post (HDP) load measurement system was used to study the effect on load measurement accuracy for several factors, including load point deviations, gauge heights, and HDP geometry

    Study of the Barringer Refractor Plate Correlation Spectrometer as a remote sensing instrument

    Get PDF
    Barringer refractor plate correlation spectrometer as remote sensing instrument of pollutant gases in atmospher

    Study of lubricant jet flow phenomena in spur gears

    Get PDF
    Lubricant jet flow impingement and penetration depth into a gear tooth space were measured at 4920 and 2560 rpm using a 8.89 cm (3.5 inch) pitch diameter 8 pitch spur gear at oil pressures from 70,000 to 410,000 n/sqm (10 psi to 60 psi). A high speed motion picture camera was used with xenon and high speed stroboscopic lights to slow down and stop the motion of the oil jet. An analytical model was developed for the vectorial impingement dept and for the impingement depth with tooth space windage effects included. The windage effects for oil drop size greater than .0076 cm (.003 inches). The analytical impingement dept compared favorably with experimental results above an oil jet pressure of 70,000 n/sqm (10psi). There was further penetration into the tooth space after impingement, but much of this oil was thrown out of the tooth space without further contacting the gear teeth

    A versatile microfadometer for lightfastness testing and pigment identification

    Get PDF
    The design and experimental method for the use of a novel instrument for lightfastness measurements on artwork is presented. The new microfadometer design offers increased durability and portability over the previous, published design, broadening the scope of locations at which data can be acquired. This reduces the need for art handling or transportation in order to gain evidence-based risk assessments for the display of light-sensitive artworks. The instrument focuses a stabilized high powered xenon lamp to a spot 0.25 millimeters (FWHM) while simultaneously monitoring color change. This makes it possible to identify pigments and determine the lightfastness of materials effectively and non-destructively. With 2.59mW or 0.82 lumens (1.7 x107 lux for a 0.25mm focused spot) the instrument is capable of fading Blue Wool 1 to a measured 11 ΔEab value (using CIE standard illuminant D65) in 15 minutes. The temperature increase created by focused radiation was measured to be 3 to 4°C above room temperature. The system was stable within 0.12 ΔEab over 1 hour and 0.31 ΔEab over 7 hours. A safety evaluation of the technique is discussed which concludes that some caution should be employed when fading smooth, uniform areas of artworks. The instrument can also incorporate a linear variable filter. This enables the researcher to identify the active wavebands that cause certain degradation reactions and determine the degree of wavelength dependence of fading. Some preliminary results of fading experiments on Prussian blue samples from the paint box of J. M. W Turner (1755-1851) are presented

    Comparison of predicted and measured elastohydrodynamic film thickness in a 20-millimeter-bore ball bearing

    Get PDF
    Elastohydrodynamic film thicknesses were measured for a 20-mm bore ball bearing using the capacitance technique. The bearing was thrust loaded to 90, 445, and 778 N (20, 100, and 175 lb). The corresponding maximum contact stress on the inner race was 1.28, 2.09, and 2.45 GPa (185 000, 303,000, and 356, 000 psi). Test speeds ranged from 400 to 15,000 rpm. Measurements were taken with four different lubricants: (1) synthetic paraffinic; (2) synthetic paraffinic with additives; (3) synthetic type II aircraft oil; and (4) synthetic cycloaliphatic hydrocarbon traction fluid. The test bearing was mist lubricated. Test temperatures were 27, 65, and 121 C (80, 150, and 250 F). The measured results for the various test parameters were compared to theoretical predictions from computer programs. Also the data were plotted on dimensionless coordinates and compared to several classical isothermal theories

    A Short Wavelength GigaHertz Clocked Fiber-Optic Quantum Key Distribution System

    Full text link
    A quantum key distribution system has been developed, using standard telecommunications optical fiber, which is capable of operating at clock rates of greater than 1 GHz. The quantum key distribution system implements a polarization encoded version of the B92 protocol. The system employs vertical-cavity surface-emitting lasers with emission wavelengths of 850 nm as weak coherent light sources, and silicon single photon avalanche diodes as the single photon detectors. A distributed feedback laser of emission wavelength 1.3 micro-metres, and a linear gain germanium avalanche photodiode was used to optically synchronize individual photons over the standard telecommunications fiber. The quantum key distribution system exhibited a quantum bit error rate of 1.4%, and an estimated net bit rate greater than 100,000 bits-per-second for a 4.2 km transmission range. For a 10 km fiber range a quantum bit error rate of 2.1%, and estimated net bit rate of greater than 7,000 bits-per-second was achieved.Comment: Pre-press versio

    Space station structures and dynamics test program

    Get PDF
    The design, construction, and operation of a low-Earth orbit space station poses unique challenges for development and implementation of new technology. The technology arises from the special requirement that the station be built and constructed to function in a weightless environment, where static loads are minimal and secondary to system dynamics and control problems. One specific challenge confronting NASA is the development of a dynamics test program for: (1) defining space station design requirements, and (2) identifying the characterizing phenomena affecting the station's design and development. A general definition of the space station dynamic test program, as proposed by MSFC, forms the subject of this report. The test proposal is a comprehensive structural dynamics program to be launched in support of the space station. The test program will help to define the key issues and/or problems inherent to large space structure analysis, design, and testing. Development of a parametric data base and verification of the math models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The philosophy is to integrate dynamics into the design phase through extensive ground testing and analytical ground simulations of generic systems, prototype elements, and subassemblies. On-orbit testing of the station will also be used to define its capability

    Photochemical colour change for traditional watercolour pigments in low oxygen levels

    Get PDF
    An investigation for light exposure on pigments in low-oxygen environments (in the range 0–5% oxygen) was conducted using a purpose-built automated microfadometer for a large sample set including multiple samples of traditional watercolour pigments from nineteenth-century and twentieth-century sources, selected for concerns over their stability in anoxia. The pigments were prepared for usage in watercolour painting: ground and mixed in gum Arabic and applied to historically accurate gelatine glue-sized cotton and linen-based papers. Anoxia benefited many colorants and no colorant fared worse in anoxia than in air, with the exception of Prussian blue and Prussian green (which contains Prussian blue). A Prussian blue sampled from the studio materials of J.M.W. Turner (1775 − 1851) was microfaded in different environments (normal air (20.9% oxygen) 0, 1, 2, 3.5, or 5% oxygen in nitrogen) and the subsequent dark behaviour was measured. The behaviour of the sample (in normal air, anoxia, and 5% oxygen in nitrogen) proved to be consistent with the 55 separately sourced Prussian blue samples. When exposed to light in 5% oxygen in nitrogen, Prussian blue demonstrated the same light stability as in air (at approximately 21°C and 1 atmosphere). Storage in 5% oxygen is proposed for ‘anoxic’ display of paper-based artworks that might contain Prussian blue, to protect this material while reducing light-induced damage to other components of a watercolour, including organic colorants and the paper support

    Pressure and force data for a flat wing and a warped conical wing having a shockless recompression at Mach 1.62

    Get PDF
    A conical nonlinear flow computer code was used to design a warped (cambered) wing which would produce a supercritical expansion and shockless recompression of the crossflow at a lift coefficient of 0.457, an angle of attack of 10 deg, and a Mach number of 1.62. This cambered wing and a flat wing the same thickness distribution were tested over a range of Mach numbers from 1.6 to 2.0. For both models the forward 60 percent is purely conical geometry. Results obtained with the cambered wing demonstrated the design features of a supercritical expansion and a shockless recompression, whereas results obtained with the flat wing indicated the presence of crossflow shocks. Tables of experimental pressure, force, and moment data are included, as well as selected oil flow photographs
    • 

    corecore